The Generalized Hyers –ulam –rassias Stability of Quadratic Functional Equations with Two Variables
ثبت نشده
چکیده
In this paper,we consider functional equations involving a two variables examine some of these equations in greater detail and we study applications of cauchy’s equation.using the generalized hyers-ulam-rassias stability of quaradic functional equations finding the solution of two variables(quaradic functional equations) 1.INTRODUCTION We achieve the general solution and the generalized Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities for quadratic functional equations f ax + by + f ax − by
منابع مشابه
Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has ...
متن کاملA Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces
Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.
متن کاملHyers-Ulam-Rassias Stability of Quadratic Functional Equations in 2-Banach Spaces
In this paper, using the direct method we study the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equations (2 ) ( ) 6 ( ) f x y f x y f x and (3 ) ( ) 16 ( ) f x y f x y f x for the mapping f from normed linear space in to 2-Banach spaces.
متن کاملThe Generalized Hyers-ulam-rassias Stability of a Quadratic Functional Equation
In this paper, we investigate the generalized Hyers Ulam Rassias stability of a new quadratic functional equation f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 4f(x)− 2f(y). Generalized Hyers-Ulam-Rassias Stability K. Ravi, R. Murali and M. Arunkumar vol. 9, iss. 1, art. 20, 2008 Title Page
متن کاملStability of generalized Newton difference equations
In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations ∆n(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional...
متن کامل